
UNIT -1 

Introduction to digital Electronics:- 

Digital concepts applied to electronics give rise to field of Digital electronics. 

Digital circuits form the backbone of modern day gadgets like cell phone, digital 

cameras, GPS displays, etc. since all these devices use information which is digital 

in nature. Digital systems find application in modern day traffic systems, control 

systems, weather forecasting systems, and internet, etc. 

One of the reasons for widespread application of digital systems is use of Digital 

computers in applications which provides users with flexibility as any change can 

be incorporated with the change in system software thus reducing cost which also 

is an additional advantage. Discrete Information used by digital systems is 

represented in form of signals which can be classified as Discrete or Continuous 

signals and systems can be classified as Analog and digital systems. 

Advantage of Digital Electronic 

1. Ease of Programmability: - The digital systems can be used for different 

applications by simply changing the program without additional changes in 

hardware. 

2. Reduction in cost of hardware:- 

The cost of hardware gets reduced by use of digital components and this has 

been possible due to advances in IC technology. With ICs the number of 

components that can be placed in a given area of Silicon are increased which 

helps in cost reduction. 

3. High Speed:- Digital processing of data ensures high speed of operation 

which is possible due to advances in Digital Signal Processing. 

4. High Reliability:- Digital systems are highly reliable one of the reasons for 

that is use of error correction codes. 

5. Design to easy:- The design of digital systems which require use of Boolean 

algebra and other digital techniques is easier compared to analog designing. 

6. Result can reproduced easily: 

Since the output of digital systems unlike analog systems is independent of 

temperature, noise, humidity and other characteristics of components the 

reproducibility of results is higher in digital systems than in analog systems. 



Positive and Negative Logic:- 

There are two types of representations used in digital systems, the positive 

logic and the negative logic representations. 

In positive logic representation Bit 1 represents Logic high and Bit 0 

represent a Logic low as shown in fig 2 a and b. High is represented by +5 

Volts and low is represented by -5 Volts or 0 Volts 

 

In Negative logic representation Bit 1 represents logic low and Bit 0 

represents logic high as shown in Fig 3 a and b. In terms of voltage level, bit 

1 can be represented as +5V and bit 0 can be represented as 0 V or -5 Volts. 



 
 

 

Conversion of Number Systems :- 

Any base R to Decimal Number system conversion 

For conversion of any base R number to Decimal number system each 

coefficient is multiplied with the corresponding power of R and added to 

obtain the decimal number. 

Binary to Decimal conversion 

(1101.01)2 = 1 × 23 + 1×22 + 0 × 21 + 1 × 20 + 0 × 2(-1) + 1 × 2(-2) = (13.25)10 

Octal to Decimal conversion 

(431.2)8 = 4  × 82 + 3 × 81 + 1 × 80 + 2 × 8(-1) = (281.25)10 

Hexadecimal to Decimal conversion 

(6E9.D8)16 = 6 × 162 + 14 × 161 + 9 × 160 + 13 × 16(-1) + 8 × 16(-2) = 

(1769.84375)10 

Base 5 to Decimal conversion 

(421.3)5 = 4 × 52 + 2 × 51 + 1 × 50 + 3 × 5(-1) = (111.6)10 

Likewise any number of base R can be converted to Decimal number system 

Decimal to any base R number system conversion 



For conversion of Decimal number system to any base R, the decimal 

number (Integer part) is divided by R and the remainders obtained at each 

stage are used to represent the base R representation of the decimal number 

system. For fractional part the digits are multiplied by R and resulting digits 

integer part is used to define the number. 

Decimal to Binary conversion 

(31.6875)10 = (?)2 

For Integer part, the number is divided by 2 and the remainders are read in 

the direction of arrow from down to top corresponding to MSB and LSB as 

shown below 

 
For fractional part, the digits are multiplied by two and integer part defines 

the number as shown below, the numbers are now read from top to bottom 

as shown by arrow, the multiplication is done ideally till the decimal part or 

fractional part becomes zero or the repetition starts. 

 
Decimal to Octal 

(152.512)10 = (?)8 

For Integer part, the number is divided by 8 and the remainders are read in 

the direction of arrow from down to top corresponding to MSB and LSB as 

shown, this gives (152)10 = (230)8 

 



 

For fractional part, the digits are multiplied by eight and integer part defines the 

number as shown below, the numbers are now read from top to bottom as shown 

by arrow, the multiplication is done ideally till the decimal part or fractional part 

becomes zero or the repetition starts. 

 

 

Decimal to Hexadecimal 

(2607.565)10 = (?)16 

For Integer part, the number is divided by 16 and the remainders are read in 

the direction of arrow from down to top corresponding to MSB and LSB as 

shown, this gives (2607)10 = (A2F)16 

 
 

For fractional part, the digits are multiplied by sixteen and integer part 

defines the number as shown below, the numbers are now read from top to 

bottom as shown by arrow, the multiplication is done ideally till the decimal 

part or fractional part becomes zero or the repetition starts. 



 

 
Likewise any decimal number can be converted into any base R by 

following the procedure as illustrated 

Binary to Octal conversion 

Any octal digit corresponds to three binary digits. So to represent any binary 

number into octal number system the binary digits are grouped as three bits 

together from LSB to MSB for integer part of number, if groupings of three 

are not possible then zeroes are padded before the MSB and for fractional 

part the groupings are done towards right of decimal point and zeroes are 

padded towards right at the end of the number to make groupings of three.  

Since each binary number is a positional number and each bit corresponding 

to weights of powers of two, groupings of three gives equivalent octal 

number. For example (110)2 = 1 × 22 + 1 × 21 + 0 × 20= (6)8. This can also 

be understood as 421 coding where each 421 represents the weights of the 

three positions and 1 at any position is equal to that weight being accounted. 

For example 101 means weight 4 and weight 1 are accounted, so equivalent 

is 4+1 =5 in octal representation. Below table gives the binary and its 

equivalent octal representation 

 Octal 

Number 

  Equivalent Binary number (421 

coding) 

 0  000    (0x4+0x2+0x1) 

 1  001    (0x4+0x2+1x1) 



 2  010    (0x4+1x2+0x1) 

 3  011     (0x4+1x2+1x1) 

 4  100     (1x4+0x2+0x1) 

 5  101     (1x4+0x2+1x1) 

6  110     (1x4+1x2+0x1) 

 7  111     (1x4+1x2+1x1) 

Table 1 : Octal Binary equivalent 

Say a binary number is given as (1101010101111000101.1110000011), to 

find its equivalent octal representation as per the method detailed above 

 
Octal to Binary conversion:- 

 

For converting any octal number to binary, the binary representation as 

detailed above in Table 1 is to be written for each octal digit. 

(672.421)8 = (110 111 010. 100 010 001)2 

 

Binary to Hexadecimal conversion: 

 

Any hexadecimal digit corresponds to four binary digits. So to represent any 

binary number into hexadecimal number system the binary digits are 

grouped as four bits together from LSB to MSB for integer part of number, 

if groupings of four are not possible then zeroes are padded before the MSB 

and for fractional part the groupings are done towards right of decimal point 

and zeroes are padded towards right at the end of the number to make 

groupings of four. 

Since each binary number is a positional number and each bit corresponding 

to weights of powers of two, groupings of four gives equivalent hexadecimal 

number. For example (1110)2 = 1 × 23 + 1 × 22+ 1 × 21 + 0 × 20 = (14 = E)16. 

This can also be understood as 8421 coding where each 8421 represents the 

weights of the four positions and 1 at any position is equal to that weight 

being accounted. For example 0101 means weight 4 and weight 1 are 



accounted, so equivalent is 4+1 =5 in hexadecimal representation. Below 

table gives the binary and its equivalent hexadecimal representation 

 Hexadecimal 

Number 

 Equivalent Binary number 

(8421 coding) 

 0  0000    (0X8+0x4+0x2+0x1) 

 1  0001    (0X8+0x4+0x2+1x1) 

 2  0010    (0X8+0x4+1x2+0x1) 

 3  0011    (0X8+0x4+1x2+1x1) 

 4  0100    (0X8+1x4+0x2+0x1) 

 5  0101    (0X8+1x4+0x2+1x1) 

 6  0110    (0X8+1x4+1x2+0x1) 

 7  0111    (0X8+1x4+1x2+1x1) 

 8  1000    (1X8+0x4+0x2+0x1) 

 9  1001    (1X8+0x4+0x2+1x1) 

 A  1010    (1X8+0x4+1x2+0x1) 

 B  1011    (1X8+0x4+1x2+1x1) 

 C  1100    (1X8+1x4+0x2+0x1) 

 D  1101    (1X8+1x4+0x2+1x1) 

 E  1110    (1X8+1x4+1x2+0x1) 

 F  1111    (1X8+1x4+1x2+1x1) 

Table 2: Hexadecimal Binary equivalent 

Say a binary number is given as (1101010101111000101.1110000011), to 

find its equivalent hexadecimal representation as per the method detailed 

above 



 
Hexadecimal to Binary conversion:- 

 

For converting any hexadecimal number to binary, the binary representation 

as detailed above in Table 2 is to be written for each hexadecimal digit. 

(2C6B.E2)16 = (0010 1100 0110 1011. 1110 0010)2 

 

Binary Codes 

 
Digital computers are based on binary number system. Binary Code can 

represent numbers, characters and operations to be performed. 

The group of 1’s and 0’s in binary numbers is a code representing the 

decimal number. When a decimal number is a represented by its 

equivalent binary number, we call it straight binary coding. 

 BCD (Binary Coded Decimal) Code- If decimal number is represented 

by its binary equivalent, resulting code is called binary coded decimal.  

As the largest decimal digit is 9, it can be represented by a minimum of 

4 bits. 

To illustrate the BCD code, (234)10 can be represented as   

  2 3 4 Decimal 

 

                                                                            

                          0010      0011       0100 4 bit binary of each digit 

If we combine the individual binary equivalent of each digit, we result 

in BCD code i.e. 

  (234)10 = (001000110100)BCD 

                                                     

In binary (234)10 can be represented as 

   (234)10 = (11101010)2 

If we reverse the procedure i.e. BCD equivalent is to be converted to 

decimal, then we undergo following steps- 

(i) Divide the given BCD code in group of fours. 

(ii) Take decimal equivalent of each group. 



(iii) Combine the decimal equivalents and we get the resulting decimal 

equivalent. 

Ex. Convert (001000110100)BCD to decimal. 

          0010 0011 0100  Binary grouped in 4’s 

 

                                                                            

                             2 3 4  Decimal Equivalent 

  

           (001000110100)BCD = (234)10 

From the above examples it is clear that BCD code is a weighted code 

i.e. each digit has a specific weight attached according to their position.  

So, BCD code is also known as 8-4-2-1 code.  The designation 8421 

indicates the binary weights of 4 bits (23, 22, 21, 20). 

The six code combinations- 1010, 1011, 1100, 1101, 1110, 111 are not 

used in 8421 BCD code. Addition with BCD: To perform addition in 

BCD, we first add-up in binary format and then perform the BCD 

conversion i.e. if the result is any of the six combinations, which are not 

used in BCD, we add 6 to each group of four digits. 

Ex. Add 1001 & 0101. 

Solution: 

1  0  0  1 

+  0  1  0  1 

____________ 

1  1  1  0 

This resulting combination is invalid in BCD.  So, we add 6 to this 

result. 

   1  1  1  0 

  + 0  1  1  0 

                   _________________ 

            1  0  1  0  0 

     1001 + 0101 =  0001      0100 

 

 

          1     4 

= (14)10 



Excess-3 Code : It is another BCD code.  Excess-3 is a digital code in 

which decimal digit is converted to BCD and then adding decimal 3 to 

each decimal digit BCD equivalent 

Ex. Convert the given decimal number 159 to Excess-3 Code. 

Solution: 

                    1            5            9  

 

   

   0001 0101 1001  BCD Equivalent 

 +  0011 0011 0011  Adding decimal 3 to each digit 

 ___________________________ 

  0100 1000 1100 

So, (159)10 = (010010001100)Excess-3 

Gray Code : Gray weight is an unweighted code i.e. there are no specific 

weights assigned to the bit positions.  It is a minimum change code in 

which only a single bit changes from one number to the next. E.g.  Gray 

code for 3 is 0010 and for 4 is 0110. So there is change in one bit 

only.Similar to binary, gray code can have any number of bits.  Gray 

code is a reflected code.  Table shows 4 bit gray code for decimal and 

binary numbers. 

Decimal Binary Gray 

0 

1 

2 

3 

4 

5 

6 

7 

 

8 

9 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

 

1000 

1001 

0000 

0001 

0011 

0010 

0110 

0111 

0101 

0100 

 

1100 

1101 



  Binary to Gray conversion : To convert a binary number to Gray code 

we undergo the following steps: 

 The MSB (most Significant Bit) of gray Code is same as of 

corresponding binary number. 

 Going from left to right, each left digit is added to its adjacent right 

digit and sum is the  resulting digit in  Gray Code.  If there is a carry 

in the addition, it is discarded. 

E.g., Convert (0110)2 to Gray Code. 

Solution: Step1. MSB remains the same. 

 
    

Step 2. Add left bit to the adjacent right bit and take the sum and 

discard carry if any. 

  
Step 3. Add the next adjacent pair and discard the carry. 

                                                  + 

  0 1 1 0  

 

 

  0 1 0  Carry 1 is discarded 

Step 4. Repeat step 3. 

            + 

  0 1 1     0  

 

 

  0 1 0     0   

 

So,    (0110)2 = (0101)Gray 



Gray to Binary Conversion : To convert gray code to binary, we 

undergo following steps- 

 The MSB of binary code is same as of corresponding gray code. 

 Going from left to right, each resulting digit of gray code is added to 

the adjacent right digit of the gray code and sum is the resulting digit 

in the binary code.  Carry, if there is any, is discarded. 

Ex.  Convert (0101)Gray to binary. 

Step 1 : MSB remains the same.  

   0 1 0 1  Gray 

 

0 Binary 

Step 2 : Resulting binary digit added to adjacent gray code digit. 

    0 1 0 1  Gray 

                   + 

   

    0 1    Binary 

Step 3 : Repeating step2 twice we get the resulting binary. 

    0 1 0 1   

                   +     +       + 

   

    0 1 1 0         Carry is discarded. 

       (0101)Gray = (0110)2 

 

  

 

 

 

 

 



 

 

Half Adder 

A half adder is a logical circuit that performs an addition operation on two binary digits. The half 

adder produces a sum and a carry value, which are both binary digits.  

Half adder accepts two binary digits say, A, B and produces two outputs Sum (S) and Carry (C). Table  

shows the truth table for half adder. 

Inputs 

A             B 

Output 

S            C 

0              0 0            0 

0              1 1            0 

1              0 1            0 

1              1 0            1 

Table : Truth Table for half adder 

The logical expressions for S and C evaluated from table above  are 

S = A’B + AB’ = A  B 

C = AB 



The logical realization of half adder is shown in fig. below 

S

C

A

B

 

Fig.: Logic Circuit for half-adder. 

The drawback of this circuit is that in case of a multibit addition, it cannot include a carry. As half 

adder has two outputs,  the sum S and carry C, C is the most significant of these two outputs. 

 Full Adder 

The second basic category of adder is the full-adder. This combinational circuit performs the 

arithmetic addition of three input bits. The difference between the full- and the half-adder is the 

ability of the former to handle input carries (CI). A full adder has three inputs A, B, and a carry in CI, 

such that multiple adders can be used to add larger numbers. To remove ambiguity between the input 

and output carry lines, the carry in is labeled CI while the carry out is labeled C. Table shows the truth 

table for full adder Table: Truth table for Full adder 

The logical expression for S and C can be derived from the truth table using K-Map 1 and K-Map 2. 



 

Fig.  K-Maps  for Sum and carry. 

The logic circuit for S and C are shown in fig (a) and fig. (b) respectively. 

 

Fig (a)   : Logic Circuit for SUM (S). 

 

Fig (b) : Logic Circuit for CARRY (C). 

The expression for S and C can be further simplified as : 

S = A’B’CI + A’BCI’ + AB’CI’ + ABCI 



   =  AB’ CI’+ A’BCI’ + ABCI + A’B’CI  

   = CI’ (AB’+ A’B) + CI (AB + A’B’)  

but,       AB + A’B’ = (AB’ + A’B)’ 

So,        S        = CI’ (AB’ + A’ B) + CI (AB’ + A’ B)’  

                 = (A  B  CI) 

The logic circuit for above simplified equation is shown in fig.. 

 

Fig: Logic Circuit for S =  (A  B  CI). 

The output of the full-adder is the two bit arithmetic sum of three 1-bit numbers. A full adder can be 

constructed from two half adders by connecting A and B to the input of one half adder, connecting the 

sum from that to an input to the second adder, connecting CI to the other input and OR the two carry 

outputs. Equivalently, S could be made the three-bit x or of A, B, and CI and C could be made the 

three-bit majority function of A, B, and CI. Fig shows logic circuit for constructing full adder from two 

half adders. 

 

Fig: Full Adder using two half adders. 

 

 

 

 



Multiplexers

 

Multiplexer is abbreviated as MUX. It is a digital device that selects one of the several 

input signals and passes it on the output. Because of this reason, it is also known as data 

selector. The input selected is controlled by a set of select inputs. Fig shows the functional 

block diagram of multiplexer. 

n : 1
Multiplexer

I0

I1

I2

In–1

G

IN
P

U
T

S

Strobe or
enable

OUTPUT

Y

S0 S1 Sm–1

SELECT INPUT  

Fig DIGITAL MULTIPLEXER (Block Diagram of N : 1 MUX). 

If we have n input lines then for connection to the output, a set of m select inputs is 

required; where 2m = n.  Depending upon the digital code applied at the select inputs one 

out of n data sources is selected and transmitted to a single output channel.  Normally, a 

strobe (or enable) input (G) is incorporated which helps in cascading and it is generally 

active-low, which means it performs its intended operation when it is LOW. 

Now let us consider an example of 4 : 1 MUX. The block diagram for 4 : 1 MUX is shown 

in fig.  

I0

I1

I2

I3

Y
4 : 1

MUX

Fig. Block Diagramof 4 : 1 MUX. 

As shown in fig  it will have 4 inputs i.e. I0, I1, I2, I3; 1 output i.e. Y and two selection lines as 

22 = 4 i.e. S1, S0. Table lists the input-to-output path for each possible bit combination of the 

select lines. 

Table: Truth Table of a 4 : 1 multiplexer 

Select inputs 

S1               S0 

Output 

Y 

0 0 I0 

0 1 I1 



1 0 I2 

1 1 I 3 

From the above truth table the output Y can be expressed as : 

Y= I0 • 1S • 0S  + I1 • 1S  • S0  + I2 • S1 • 0S  + I3 • S1  • S0 

The logic circuit for the above equation is realized in fig. 

 

 

 Fig : Logic circuit for 4:1 MUX. 

We can realize MUX using universal gates. The 4 : 1 MUX shown in fig. above  can be 

realized using Enable or Strobe signal (G) and NAND gates as shown in fig. below 

 

Fig : Logic circuit for 4 : 1 MUX using Universal gates and Enable. 

We can design large MUX using two or more MUX e.g. We can design a 32 : 1 MUX using 

two 16 : 1 MUX as shown in fig. 



Y

0
1

16 : 1
MUX A

16 : 1
MUX B
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S3

S3
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S2
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S1

S1

S1

S0

S0
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I17

I31

I16

I0
I1

G  

                                     Fig: 32 : 1 MUX using two 16 : 1 MUX. 

In this realization, when strobe signal G = 0 then MUX A is enabled and one of the inputs 

from I0 – I15 is selected as an output. When G = 1 then MUX B is enabled and one of the 

inputs from I16 – I31 is selected as an output.  

Advantages of use of multiplexers 

1. Simplification of logic expression is not required.  

2. It minimizes the IC package count.  

3. Logic design is simplified.  

Combinational Logic Design Using Multiplexers 

The multiplexing function discussed above can be conveniently used as logic element in the 

design of combinational circuits.  Standard ICs are available for  2 : 1, 4 : 1, 8 : 1 and 16 : 1 

multiplexers. 

Available multiplexer ICs are listed in table. 

IC 

No.                                       Description                                         Output 

74157                             Quad 2 : 1   Multiplexer                Same as input 

74158                             Quad 2 : 1   Multiplexer                Inverted 

input 

74153                             Dual 4 : 1   Multiplexer                  Same as 

input 

74352                             Dual 4 : 1   Multiplexer                  Inverted 

input 

74151A                          8 : 

1   Multiplexer                           Complementary outputs 

74152                             8 : 1  Multiplexer                            Inverted 

input 

74150                            16 : 1  Multiplexer                           Inverted 

input 

Table : List of available multiplexer ICs 



Ex : Use a 4 line to 1 line MUX to implement the function shown in the following truth 

table (Y = A’B’ + AB). 

Sol: 

 

Fig. A 4-line to 1-line MUX implementation of a function of 2 variables. 

Simply connecting I0 = 1, I1 = 0, I2 = 0, I3 = 1 and the inputs A and B to the S1 and S0 

selector inputs of the 4-line to 1-line MUX implement this truth table, as shown in figure . 

Demultiplexers

 

The opposite of the multiplexer circuit, logically enough, is the demultiplexer. It is 

abbreviated as DEMUX. This circuit receives information on a single line and transmits 

this information on one of various possible output lines.  It consists of one input line, n 

selection lines and m output lines where 2n = m. The block diagram of demultiplexer is 

shown in fig. 

Demultiplexer

Sm–1 Sm–2

D0

S0

Input
Output

D1
D3

Dn–1

 

Fig.  Block Diagram of Demultiplexer. 

The select input determines to which output the data input will be transmitted.  The 

number of output lines is n and the number of select lines is m, where n = 2m.  The data 

input line is to be connected to logic 1 level. This is device is available as an MSI IC and can 

conveniently be used for the design of combinational circuits.  These devices are available 

as 2-line-to-4 line, 3-line-to-8-line, and 4-line-to-16-line-decoders.  The output of most of 

these devices are active-low, also there is an active-low enable/data input terminal 

available.  

Available demultiplexer ICs 



 

 We can design large Demux cascading two or more Demux e.g. We can design a 1 : 32 

DEMUX using two 1 : 16 DEMUX as shown in fig. 

 

Fig : DEMUX using two 1 : 16 DEMUX. 
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