
UNIT -1

Introduction to digital Electronics:-

Digital concepts applied to electronics give rise to field of Digital electronics.

Digital circuits form the backbone of modern day gadgets like cell phone, digital

cameras, GPS displays, etc. since all these devices use information which is digital

in nature. Digital systems find application in modern day traffic systems, control

systems, weather forecasting systems, and internet, etc.

One of the reasons for widespread application of digital systems is use of Digital

computers in applications which provides users with flexibility as any change can

be incorporated with the change in system software thus reducing cost which also

is an additional advantage. Discrete Information used by digital systems is

represented in form of signals which can be classified as Discrete or Continuous

signals and systems can be classified as Analog and digital systems.

Advantage of Digital Electronic

1. Ease of Programmability: - The digital systems can be used for different

applications by simply changing the program without additional changes in

hardware.

2. Reduction in cost of hardware:-

The cost of hardware gets reduced by use of digital components and this has

been possible due to advances in IC technology. With ICs the number of

components that can be placed in a given area of Silicon are increased which

helps in cost reduction.

3. High Speed:- Digital processing of data ensures high speed of operation

which is possible due to advances in Digital Signal Processing.

4. High Reliability:- Digital systems are highly reliable one of the reasons for

that is use of error correction codes.

5. Design to easy:- The design of digital systems which require use of Boolean

algebra and other digital techniques is easier compared to analog designing.

6. Result can reproduced easily:

Since the output of digital systems unlike analog systems is independent of

temperature, noise, humidity and other characteristics of components the

reproducibility of results is higher in digital systems than in analog systems.

Positive and Negative Logic:-

There are two types of representations used in digital systems, the positive

logic and the negative logic representations.

In positive logic representation Bit 1 represents Logic high and Bit 0

represent a Logic low as shown in fig 2 a and b. High is represented by +5

Volts and low is represented by -5 Volts or 0 Volts

In Negative logic representation Bit 1 represents logic low and Bit 0

represents logic high as shown in Fig 3 a and b. In terms of voltage level, bit

1 can be represented as +5V and bit 0 can be represented as 0 V or -5 Volts.

Conversion of Number Systems :-

Any base R to Decimal Number system conversion

For conversion of any base R number to Decimal number system each

coefficient is multiplied with the corresponding power of R and added to

obtain the decimal number.

Binary to Decimal conversion

(1101.01)2 = 1 × 23 + 1×22 + 0 × 21 + 1 × 20 + 0 × 2(-1) + 1 × 2(-2) = (13.25)10

Octal to Decimal conversion

(431.2)8 = 4 × 82 + 3 × 81 + 1 × 80 + 2 × 8(-1) = (281.25)10

Hexadecimal to Decimal conversion

(6E9.D8)16 = 6 × 162 + 14 × 161 + 9 × 160 + 13 × 16(-1) + 8 × 16(-2) =

(1769.84375)10

Base 5 to Decimal conversion

(421.3)5 = 4 × 52 + 2 × 51 + 1 × 50 + 3 × 5(-1) = (111.6)10

Likewise any number of base R can be converted to Decimal number system

Decimal to any base R number system conversion

For conversion of Decimal number system to any base R, the decimal

number (Integer part) is divided by R and the remainders obtained at each

stage are used to represent the base R representation of the decimal number

system. For fractional part the digits are multiplied by R and resulting digits

integer part is used to define the number.

Decimal to Binary conversion

(31.6875)10 = (?)2

For Integer part, the number is divided by 2 and the remainders are read in

the direction of arrow from down to top corresponding to MSB and LSB as

shown below

For fractional part, the digits are multiplied by two and integer part defines

the number as shown below, the numbers are now read from top to bottom

as shown by arrow, the multiplication is done ideally till the decimal part or

fractional part becomes zero or the repetition starts.

Decimal to Octal

(152.512)10 = (?)8

For Integer part, the number is divided by 8 and the remainders are read in

the direction of arrow from down to top corresponding to MSB and LSB as

shown, this gives (152)10 = (230)8

For fractional part, the digits are multiplied by eight and integer part defines the

number as shown below, the numbers are now read from top to bottom as shown

by arrow, the multiplication is done ideally till the decimal part or fractional part

becomes zero or the repetition starts.

Decimal to Hexadecimal

(2607.565)10 = (?)16

For Integer part, the number is divided by 16 and the remainders are read in

the direction of arrow from down to top corresponding to MSB and LSB as

shown, this gives (2607)10 = (A2F)16

For fractional part, the digits are multiplied by sixteen and integer part

defines the number as shown below, the numbers are now read from top to

bottom as shown by arrow, the multiplication is done ideally till the decimal

part or fractional part becomes zero or the repetition starts.

Likewise any decimal number can be converted into any base R by

following the procedure as illustrated

Binary to Octal conversion

Any octal digit corresponds to three binary digits. So to represent any binary

number into octal number system the binary digits are grouped as three bits

together from LSB to MSB for integer part of number, if groupings of three

are not possible then zeroes are padded before the MSB and for fractional

part the groupings are done towards right of decimal point and zeroes are

padded towards right at the end of the number to make groupings of three.

Since each binary number is a positional number and each bit corresponding

to weights of powers of two, groupings of three gives equivalent octal

number. For example (110)2 = 1 × 22 + 1 × 21 + 0 × 20= (6)8. This can also

be understood as 421 coding where each 421 represents the weights of the

three positions and 1 at any position is equal to that weight being accounted.

For example 101 means weight 4 and weight 1 are accounted, so equivalent

is 4+1 =5 in octal representation. Below table gives the binary and its

equivalent octal representation

 Octal

Number

 Equivalent Binary number (421

coding)

 0 000 (0x4+0x2+0x1)

 1 001 (0x4+0x2+1x1)

 2 010 (0x4+1x2+0x1)

 3 011 (0x4+1x2+1x1)

 4 100 (1x4+0x2+0x1)

 5 101 (1x4+0x2+1x1)

6 110 (1x4+1x2+0x1)

 7 111 (1x4+1x2+1x1)

Table 1 : Octal Binary equivalent

Say a binary number is given as (1101010101111000101.1110000011), to

find its equivalent octal representation as per the method detailed above

Octal to Binary conversion:-

For converting any octal number to binary, the binary representation as

detailed above in Table 1 is to be written for each octal digit.

(672.421)8 = (110 111 010. 100 010 001)2

Binary to Hexadecimal conversion:

Any hexadecimal digit corresponds to four binary digits. So to represent any

binary number into hexadecimal number system the binary digits are

grouped as four bits together from LSB to MSB for integer part of number,

if groupings of four are not possible then zeroes are padded before the MSB

and for fractional part the groupings are done towards right of decimal point

and zeroes are padded towards right at the end of the number to make

groupings of four.

Since each binary number is a positional number and each bit corresponding

to weights of powers of two, groupings of four gives equivalent hexadecimal

number. For example (1110)2 = 1 × 23 + 1 × 22+ 1 × 21 + 0 × 20 = (14 = E)16.

This can also be understood as 8421 coding where each 8421 represents the

weights of the four positions and 1 at any position is equal to that weight

being accounted. For example 0101 means weight 4 and weight 1 are

accounted, so equivalent is 4+1 =5 in hexadecimal representation. Below

table gives the binary and its equivalent hexadecimal representation

 Hexadecimal

Number

 Equivalent Binary number

(8421 coding)

 0 0000 (0X8+0x4+0x2+0x1)

 1 0001 (0X8+0x4+0x2+1x1)

 2 0010 (0X8+0x4+1x2+0x1)

 3 0011 (0X8+0x4+1x2+1x1)

 4 0100 (0X8+1x4+0x2+0x1)

 5 0101 (0X8+1x4+0x2+1x1)

 6 0110 (0X8+1x4+1x2+0x1)

 7 0111 (0X8+1x4+1x2+1x1)

 8 1000 (1X8+0x4+0x2+0x1)

 9 1001 (1X8+0x4+0x2+1x1)

 A 1010 (1X8+0x4+1x2+0x1)

 B 1011 (1X8+0x4+1x2+1x1)

 C 1100 (1X8+1x4+0x2+0x1)

 D 1101 (1X8+1x4+0x2+1x1)

 E 1110 (1X8+1x4+1x2+0x1)

 F 1111 (1X8+1x4+1x2+1x1)

Table 2: Hexadecimal Binary equivalent

Say a binary number is given as (1101010101111000101.1110000011), to

find its equivalent hexadecimal representation as per the method detailed

above

Hexadecimal to Binary conversion:-

For converting any hexadecimal number to binary, the binary representation

as detailed above in Table 2 is to be written for each hexadecimal digit.

(2C6B.E2)16 = (0010 1100 0110 1011. 1110 0010)2

Binary Codes

Digital computers are based on binary number system. Binary Code can

represent numbers, characters and operations to be performed.

The group of 1’s and 0’s in binary numbers is a code representing the

decimal number. When a decimal number is a represented by its

equivalent binary number, we call it straight binary coding.

 BCD (Binary Coded Decimal) Code- If decimal number is represented

by its binary equivalent, resulting code is called binary coded decimal.

As the largest decimal digit is 9, it can be represented by a minimum of

4 bits.

To illustrate the BCD code, (234)10 can be represented as

 2 3 4 Decimal

 0010 0011 0100 4 bit binary of each digit

If we combine the individual binary equivalent of each digit, we result

in BCD code i.e.

 (234)10 = (001000110100)BCD

In binary (234)10 can be represented as

 (234)10 = (11101010)2

If we reverse the procedure i.e. BCD equivalent is to be converted to

decimal, then we undergo following steps-

(i) Divide the given BCD code in group of fours.

(ii) Take decimal equivalent of each group.

(iii) Combine the decimal equivalents and we get the resulting decimal

equivalent.

Ex. Convert (001000110100)BCD to decimal.

 0010 0011 0100 Binary grouped in 4’s

 2 3 4 Decimal Equivalent

 (001000110100)BCD = (234)10

From the above examples it is clear that BCD code is a weighted code

i.e. each digit has a specific weight attached according to their position.

So, BCD code is also known as 8-4-2-1 code. The designation 8421

indicates the binary weights of 4 bits (23, 22, 21, 20).

The six code combinations- 1010, 1011, 1100, 1101, 1110, 111 are not

used in 8421 BCD code. Addition with BCD: To perform addition in

BCD, we first add-up in binary format and then perform the BCD

conversion i.e. if the result is any of the six combinations, which are not

used in BCD, we add 6 to each group of four digits.

Ex. Add 1001 & 0101.

Solution:

1 0 0 1

+ 0 1 0 1

1 1 1 0

This resulting combination is invalid in BCD. So, we add 6 to this

result.

 1 1 1 0

 + 0 1 1 0

 1 0 1 0 0

 1001 + 0101 = 0001 0100

 1 4

= (14)10

Excess-3 Code : It is another BCD code. Excess-3 is a digital code in

which decimal digit is converted to BCD and then adding decimal 3 to

each decimal digit BCD equivalent

Ex. Convert the given decimal number 159 to Excess-3 Code.

Solution:

 1 5 9

 0001 0101 1001 BCD Equivalent

 + 0011 0011 0011 Adding decimal 3 to each digit

 0100 1000 1100

So, (159)10 = (010010001100)Excess-3

Gray Code : Gray weight is an unweighted code i.e. there are no specific

weights assigned to the bit positions. It is a minimum change code in

which only a single bit changes from one number to the next. E.g. Gray

code for 3 is 0010 and for 4 is 0110. So there is change in one bit

only.Similar to binary, gray code can have any number of bits. Gray

code is a reflected code. Table shows 4 bit gray code for decimal and

binary numbers.

Decimal Binary Gray

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

 Binary to Gray conversion : To convert a binary number to Gray code

we undergo the following steps:

 The MSB (most Significant Bit) of gray Code is same as of

corresponding binary number.

 Going from left to right, each left digit is added to its adjacent right

digit and sum is the resulting digit in Gray Code. If there is a carry

in the addition, it is discarded.

E.g., Convert (0110)2 to Gray Code.

Solution: Step1. MSB remains the same.

Step 2. Add left bit to the adjacent right bit and take the sum and

discard carry if any.

Step 3. Add the next adjacent pair and discard the carry.

 +

 0 1 1 0

 0 1 0 Carry 1 is discarded

Step 4. Repeat step 3.

 +

 0 1 1 0

 0 1 0 0

So, (0110)2 = (0101)Gray

Gray to Binary Conversion : To convert gray code to binary, we

undergo following steps-

 The MSB of binary code is same as of corresponding gray code.

 Going from left to right, each resulting digit of gray code is added to

the adjacent right digit of the gray code and sum is the resulting digit

in the binary code. Carry, if there is any, is discarded.

Ex. Convert (0101)Gray to binary.

Step 1 : MSB remains the same.

 0 1 0 1 Gray

0 Binary

Step 2 : Resulting binary digit added to adjacent gray code digit.

 0 1 0 1 Gray

 +

 0 1 Binary

Step 3 : Repeating step2 twice we get the resulting binary.

 0 1 0 1

 + + +

 0 1 1 0 Carry is discarded.

 (0101)Gray = (0110)2

Half Adder

A half adder is a logical circuit that performs an addition operation on two binary digits. The half

adder produces a sum and a carry value, which are both binary digits.

Half adder accepts two binary digits say, A, B and produces two outputs Sum (S) and Carry (C). Table

shows the truth table for half adder.

Inputs

A B

Output

S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Table : Truth Table for half adder

The logical expressions for S and C evaluated from table above are

S = A’B + AB’ = A B

C = AB

The logical realization of half adder is shown in fig. below

S

C

A

B

Fig.: Logic Circuit for half-adder.

The drawback of this circuit is that in case of a multibit addition, it cannot include a carry. As half

adder has two outputs, the sum S and carry C, C is the most significant of these two outputs.

 Full Adder

The second basic category of adder is the full-adder. This combinational circuit performs the

arithmetic addition of three input bits. The difference between the full- and the half-adder is the

ability of the former to handle input carries (CI). A full adder has three inputs A, B, and a carry in CI,

such that multiple adders can be used to add larger numbers. To remove ambiguity between the input

and output carry lines, the carry in is labeled CI while the carry out is labeled C. Table shows the truth

table for full adder Table: Truth table for Full adder

The logical expression for S and C can be derived from the truth table using K-Map 1 and K-Map 2.

Fig. K-Maps for Sum and carry.

The logic circuit for S and C are shown in fig (a) and fig. (b) respectively.

Fig (a) : Logic Circuit for SUM (S).

Fig (b) : Logic Circuit for CARRY (C).

The expression for S and C can be further simplified as :

S = A’B’CI + A’BCI’ + AB’CI’ + ABCI

 = AB’ CI’+ A’BCI’ + ABCI + A’B’CI

 = CI’ (AB’+ A’B) + CI (AB + A’B’)

but, AB + A’B’ = (AB’ + A’B)’

So, S = CI’ (AB’ + A’ B) + CI (AB’ + A’ B)’

 = (A B CI)

The logic circuit for above simplified equation is shown in fig..

Fig: Logic Circuit for S = (A B CI).

The output of the full-adder is the two bit arithmetic sum of three 1-bit numbers. A full adder can be

constructed from two half adders by connecting A and B to the input of one half adder, connecting the

sum from that to an input to the second adder, connecting CI to the other input and OR the two carry

outputs. Equivalently, S could be made the three-bit x or of A, B, and CI and C could be made the

three-bit majority function of A, B, and CI. Fig shows logic circuit for constructing full adder from two

half adders.

Fig: Full Adder using two half adders.

Multiplexers

Multiplexer is abbreviated as MUX. It is a digital device that selects one of the several

input signals and passes it on the output. Because of this reason, it is also known as data

selector. The input selected is controlled by a set of select inputs. Fig shows the functional

block diagram of multiplexer.

n : 1
Multiplexer

I0

I1

I2

In–1

G

IN
P

U
T

S

Strobe or
enable

OUTPUT

Y

S0 S1 Sm–1

SELECT INPUT

Fig DIGITAL MULTIPLEXER (Block Diagram of N : 1 MUX).

If we have n input lines then for connection to the output, a set of m select inputs is

required; where 2m = n. Depending upon the digital code applied at the select inputs one

out of n data sources is selected and transmitted to a single output channel. Normally, a

strobe (or enable) input (G) is incorporated which helps in cascading and it is generally

active-low, which means it performs its intended operation when it is LOW.

Now let us consider an example of 4 : 1 MUX. The block diagram for 4 : 1 MUX is shown

in fig.

I0

I1

I2

I3

Y
4 : 1

MUX

Fig. Block Diagramof 4 : 1 MUX.

As shown in fig it will have 4 inputs i.e. I0, I1, I2, I3; 1 output i.e. Y and two selection lines as

22 = 4 i.e. S1, S0. Table lists the input-to-output path for each possible bit combination of the

select lines.

Table: Truth Table of a 4 : 1 multiplexer

Select inputs

S1 S0

Output

Y

0 0 I0

0 1 I1

1 0 I2

1 1 I 3

From the above truth table the output Y can be expressed as :

Y= I0 • 1S • 0S + I1 • 1S • S0 + I2 • S1 • 0S + I3 • S1 • S0

The logic circuit for the above equation is realized in fig.

 Fig : Logic circuit for 4:1 MUX.

We can realize MUX using universal gates. The 4 : 1 MUX shown in fig. above can be

realized using Enable or Strobe signal (G) and NAND gates as shown in fig. below

Fig : Logic circuit for 4 : 1 MUX using Universal gates and Enable.

We can design large MUX using two or more MUX e.g. We can design a 32 : 1 MUX using

two 16 : 1 MUX as shown in fig.

Y

0
1

16 : 1
MUX A

16 : 1
MUX B

15

S3

S3

S3

S2

S2

S2

S1

S1

S1

S0

S0

S0

I15

I17

I31

I16

I0
I1

G

 Fig: 32 : 1 MUX using two 16 : 1 MUX.

In this realization, when strobe signal G = 0 then MUX A is enabled and one of the inputs

from I0 – I15 is selected as an output. When G = 1 then MUX B is enabled and one of the

inputs from I16 – I31 is selected as an output.

Advantages of use of multiplexers

1. Simplification of logic expression is not required.

2. It minimizes the IC package count.

3. Logic design is simplified.

Combinational Logic Design Using Multiplexers

The multiplexing function discussed above can be conveniently used as logic element in the

design of combinational circuits. Standard ICs are available for 2 : 1, 4 : 1, 8 : 1 and 16 : 1

multiplexers.

Available multiplexer ICs are listed in table.

IC

No. Description Output

74157 Quad 2 : 1 Multiplexer Same as input

74158 Quad 2 : 1 Multiplexer Inverted

input

74153 Dual 4 : 1 Multiplexer Same as

input

74352 Dual 4 : 1 Multiplexer Inverted

input

74151A 8 :

1 Multiplexer Complementary outputs

74152 8 : 1 Multiplexer Inverted

input

74150 16 : 1 Multiplexer Inverted

input

Table : List of available multiplexer ICs

Ex : Use a 4 line to 1 line MUX to implement the function shown in the following truth

table (Y = A’B’ + AB).

Sol:

Fig. A 4-line to 1-line MUX implementation of a function of 2 variables.

Simply connecting I0 = 1, I1 = 0, I2 = 0, I3 = 1 and the inputs A and B to the S1 and S0

selector inputs of the 4-line to 1-line MUX implement this truth table, as shown in figure .

Demultiplexers

The opposite of the multiplexer circuit, logically enough, is the demultiplexer. It is

abbreviated as DEMUX. This circuit receives information on a single line and transmits

this information on one of various possible output lines. It consists of one input line, n

selection lines and m output lines where 2n = m. The block diagram of demultiplexer is

shown in fig.

Demultiplexer

Sm–1 Sm–2

D0

S0

Input
Output

D1
D3

Dn–1

Fig. Block Diagram of Demultiplexer.

The select input determines to which output the data input will be transmitted. The

number of output lines is n and the number of select lines is m, where n = 2m. The data

input line is to be connected to logic 1 level. This is device is available as an MSI IC and can

conveniently be used for the design of combinational circuits. These devices are available

as 2-line-to-4 line, 3-line-to-8-line, and 4-line-to-16-line-decoders. The output of most of

these devices are active-low, also there is an active-low enable/data input terminal

available.

Available demultiplexer ICs

 We can design large Demux cascading two or more Demux e.g. We can design a 1 : 32

DEMUX using two 1 : 16 DEMUX as shown in fig.

Fig : DEMUX using two 1 : 16 DEMUX.

	0.1_table09
	0.1_graphicB9
	0.1_Figure_2
	0.1_graphic80
	0.1_table01
	0.1_table02

